【智能制造】《中国制造2025》下的智能工厂 2018-07-21

现如今,以智能制造为核心掀起的新一轮产业革命正如猛虎之势席卷全球,世界各国积极布局国家战略,以抢占改革先机,全球智能化已是大势所趋。在”人才是第一生产力”的智能时代,各国之间的竞争实质聚焦于人力资源的竞争。因此,在研究本文论题之前,我们有必要先明晰何为智能与智能制造以及智能制造与中国制造2025的关系。

一、智能制造概念

关于智能制造,目前国际上并没有准确的定义。但通过结合《工业4.0:智能工业》和2015年工信部相关文件中关于智能制造的概念,本文将智能制造定义为:

智能制造——是集自动感知信息、自动优化决策、自动精准控制、自动智能执行功能于一身,新一代信息技术系统贯穿于设计研发、生产管理、销售服务等各个环节。具有以工业互联网为基础、以数据流为支撑、以智能化为核心等特点,可有效降低资源能耗、缩短生产周期、减少运营成本、提升生产效率、改善产品质量。

工业4.0

二、国内外智能工厂建设的现状

近年来,全球各主要经济体都在大力推进制造业的复兴。在工业4.0、工业互联网、物联网、云计算等热潮下,全球众多优秀制造企业都开展了智能工厂建设实践。例如,西门子安贝格电子工厂实现了多品种工控机的混线生产;FANUC公司实现了机器人和伺服电机生产过程的高度自动化和智能化,并通过自动化立体仓库和利用AGV在车间内的各个智能制造单元之间传递物料,实现了最高720小时无人值守;施耐德电气实现了电气开关制造和包装过程的全自动化;美国哈雷戴维森公司广泛利用以加工中心和机器人构成的智能制造单元,实现大批量定制;三菱电机名古屋制作所采用人机结合的新型机器人装配产线,实现从自动化到智能化的转变,显著提高了单位生产面积的产量;全球重卡巨头MAN公司搭建了完备的厂内物流体系,利用AGV装载进行装配的部件和整车,便于灵活调整装配线,并建立了物料超市,取得明显成效。

当前,我国制造企业面临着巨大的转型压力。一方面,劳动力成本迅速攀升、产能过剩、竞争激烈、客户个性化需求日益增长等因素,迫使制造企业从低成本竞争策略转向建立差异化竞争优势。在工厂层面,制造企业面临着招工难,以及缺乏专业技师的巨大压力,必须实现减员增效,迫切需要推进智能工厂建设。另一方面,物联网、协作机器人、增材制造、预测性维护、机器视觉等新兴技术迅速兴起,为制造企业推进智能工厂建设提供了良好的技术支撑。再加上国家和地方政府的大力扶持,使各行业越来越多的大中型企业开启了智能工厂建设的征程。

我国汽车、家电、轨道交通、食品饮料、制药、装备制造、家居等行业的企业对生产和装配线进行自动化、智能化改造,以及建立全新的智能工厂的需求十分旺盛,涌现出海尔、美的、格力等智能工厂建设的样板。例如,海尔佛山滚筒洗衣机工厂可以实现按订单配置、生产和装配,采用高柔性的自动无人生产线,广泛应用精密装配机器人,采用MES系统全程订单执行管理系统,通过RFID进行全程追溯,实现了机机互联、机物互联和人机互联;尚品宅配实现了从款式设计到构造尺寸的全方位个性定制,建立了高度智能化的生产加工控制系统,能够满足消费者个性化定制所产生的特殊尺寸与构造板材的切削加工需求;东莞劲胜全面采用国产加工中心、国产数控系统和国产工业软件,实现了设备数据的自动采集和车间联网,建立了工厂的数字映射模型(Digital Twin),构建了手机壳加工的智能工厂。在发达国家汽车领域运用比较成熟,比如特斯拉。

汽车生产

在我国制造企业在推进智能工厂建设方面,还存在诸多问题与误区:

1. 盲目购买自动化设备和自动化产线。很多制造企业仍然认为推进智能工厂就是自动化和机器人化,盲目追求“黑灯工厂”,推进单工位的机器人改造,推行机器换人,上马只能加工或装配单一产品的刚性自动化生产线。只注重购买高端数控设备,但却没有配备相应的软件系统。

2. 尚未实现设备数据的自动采集和车间联网。企业在购买设备时没有要求开放数据接口,大部分设备还不能自动采集数据,没有实现车间联网。目前,各大自动化厂商都有自己的工业总线和通信协议,OPC UA标准的应用还不普及。

3. 设备绩效不高。生产设备没有得到充分利用,设备的健康状态未进行有效管理,常常由于设备故障造成非计划性停机,影响生产。

4. 依然存在大量信息化孤岛和自动化孤岛。智能工厂建设涉及到智能装备、自动化控制、传感器、工业软件等领域的供应商,集成难度很大。很多企业不仅存在诸多信息孤岛,也存在很多自动化孤岛,自动化生产线没有进行统一规划,生产线之间还需要中转库转运。

究其原因,是智能制造和智能工厂涵盖领域很多,系统极其复杂,企业还缺乏深刻理解。在这种状况下,制造企业不能贸然推进,搞“大跃进”,以免造成企业的投资打水漂。应当依托有实战经验的咨询服务机构,结合企业内部的IT、自动化和精益团队,高层积极参与,根据企业的产品和生产工艺,做好需求分析和整体规划,在此基础上稳妥推进,才能取得实效。

三、何谓智能工厂?

智能工厂具有以下六个显著特征:

1. 设备互联。能够实现设备与设备互联(M2M),通过与设备控制系统集成,以及外接传感器等方式,由SCADA(数据采集与监控系统)实时采集设备的状态,生产完工的信息、质量信息,并通过应用RFID(无线射频技术)、条码(一维和二维)等技术,实现生产过程的可追溯。

2. 广泛应用工业软件。广泛应用MES(制造执行系统)、APS(先进生产排程)、能源管理、质量管理等工业软件,实现生产现场的可视化和透明化。在新建工厂时,可以通过数字化工厂仿真软件,进行设备和产线布局、工厂物流、人机工程等仿真,确保工厂结构合理。在推进数字化转型的过程中,必须确保工厂的数据安全和设备和自动化系统安全。在通过专业检测设备检出次品时,不仅要能够自动与合格品分流,而且能够通过SPC(统计过程控制)等软件,分析出现质量问题的原因。

3. 充分结合精益生产理念。充分体现工业工程(IE)和精益生产的理念,能够实现按订单驱动,拉动式生产,尽量减少在制品库存,消除浪费。推进智能工厂建设要充分结合企业产品和工艺特点。在研发阶段也需要大力推进标准化、模块化和系列化,奠定推进精益生产的基础。

4. 实现柔性自动化。结合企业的产品和生产特点,持续提升生产、检测和工厂物流的自动化程度。产品品种少、生产批量大的企业可以实现高度自动化,乃至建立黑灯工厂;小批量、多品种的企业则应当注重少人化、人机结合,不要盲目推进自动化,应当特别注重建立智能制造单元。工厂的自动化生产线和装配线应当适当考虑冗余,避免由于关键设备故障而停线;同时,应当充分考虑如何快速换模,能够适应多品种的混线生产。物流自动化对于实现智能工厂至关重要,企业可以通过AGV、行架式机械手、悬挂式输送链等物流设备实现工序之间的物料传递,并配置物料超市,尽量将物料配送到线边。质量检测的自动化也非常重要,机器视觉在智能工厂的应用将会越来越广泛。此外,还需要仔细考虑如何使用助力设备,减轻工人劳动强度。

5. 注重环境友好,实现绿色制造。能够及时采集设备和产线的能源消耗,实现能源高效利用。在危险和存在污染的环节,优先用机器人替代人工,能够实现废料的回收和再利用。

6. 可以实现实时洞察。从生产排产指令的下达到完工信息的反馈,实现闭环。通过建立生产指挥系统,实时洞察工厂的生产、质量、能耗和设备状态信息,避免非计划性停机。通过建立工厂的Digital Twin(数字映射),方便地洞察生产现场的状态,辅助各级管理人员做出正确决策。

仅有自动化生产线和工业机器人的工厂,还不能称为智能工厂。智能工厂不仅生产过程应实现自动化、透明化、可视化、精益化,而且,在产品检测、质量检验和分析、生产物流等环节也应当与生产过程实现闭环集成。一个工厂的多个车间之间也要实现信息共享、准时配送和协同作业。智能工厂的建设充分融合了信息技术、先进制造技术、自动化技术、通信技术和人工智能技术。每个企业在建设智能工厂时,都应该考虑如何能够有效融合这五大领域的新兴技术,与企业的产品特点和制造工艺紧密结合,确定自身的智能工厂推进方案。

在智能制造的热潮下,企业不宜盲目跟风。建设智能工厂,应围绕企业的中长期发展战略,根据自身产品、工艺、设备和订单的特点,合理规划智能工厂的建设蓝图。在推进规范化、标准化的基础上,从最紧迫需要解决的问题入手,务实推进智能工厂的建设。

机器智能

走出虚拟世界,走向物理世界——智能机器人的诞生,令人工智能技术有了真正实物的载体。

当前,新一轮科技革命和产业变革正在迸发,大数据的形成、理论算法的革新、计算能力的提升以及智能机器人与人工智能产业的发展进入新阶段。机器人与人工智能成为经济发展的新引擎。

与之伴生的是机器智能(Machine Intelligence,即MI)的概念。德勤在《2017德勤技术趋势》中首提MI的概念,指出机器智能的几个主要分支包括:机器学习(ML)、深度学习(DL)、认知分析、机器人过程自动化(RPA)和 Bot。根据德勤预测,到 2019年,全球商业在机器智能(MI)的支出将达到313亿美元。

事实上,在全球对制造业提高重视的背景下,机器智能正被赋予了新的期许。去年9月,德国启动智能平台“学习系统”,拟将其作为工业4.0的发展新阶段;12月,日本政府在《2017财年制造业白皮书》中强调,应将“互联工业”纳入超智能社会“社会5.0”议程,在实现超智能社会5.0的过程中重点关注利用智能机器人打造协同的数字化社会;今年3月,美国战略和国际研究中心(CSIS)发布的《美国机器智能国家战略》中,建议白宫方面应任命专职人员协调和推进机器智能相关战略优先实施,注重机器智能与人工智能发展齐头并进。

人工智能的应用创新面临着由软向硬的过渡。人工智能在软的消费端模式创新已经是遍地开花,但如何在硬的制造流程、产品、模式创新方面发力,是大家苦苦寻找的切入点。

值得注意的是,作为我国国民支柱、亦是机器“重地”的制造业,其转型升级正有赖于与人工智能的深度融合。我们提出的公式认为,机器智能=制造业+人工智能。

其中,关键的生产设备智能化是实现智能工厂的前提条件和关键难点,也是机器智能发挥作用的关键领域。从生产流程而言,机器智能应用在企业、生产线、车间、工厂的生产过程中,能够实现加工质量的升级、加工工业的优化、生产的智能调度和管理,推动企业生产能力的技术改造和智能升级。

此外,在具体产品方面,机器智能的核心是在终端产品中植入复杂程度不等的计算机系统,即“嵌入式系统”,这不仅将催生智能工厂、智能制造中最重要、最具有代表性的技术,而且会形成庞大的上下游产业链。

不过,人工智能在机器中的应用,不仅需要多源传感器收集真实世界的鲜活数据,并进行感知和学习,还需要进一步使用决策驱动执行机构改变物理世界,从而引领机器人产业革命。


工业互联网操作系统




产业智能官  AI-CPS


用“人工智能赛博物理操作系统新一代技术+商业工业互联网操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链


长按上方二维码关注微信公众号: AI-CPS



本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com



标签: